3^{\prime}-[(Methoxymethyl)oxy]-2,2-dimethylpropionanilide (7). To a mixture of sodium hydride ($0.419 \mathrm{~g}, 17.46 \mathrm{mmol}$) and 50 mL of dry THF under nitrogen at $0^{\circ} \mathrm{C}$ was added phenol 6 (3.067 g, 15.89 mmol). After stirring at $0^{\circ} \mathrm{C}$ for 3 h , chloromethyl methyl ether ($1.35 \mathrm{~mL}, 17.78 \mathrm{mmol}$) was added, and the reaction was allowed to come to room temperature overnight. The solution containing precipitated NaCl was diluted with ether, washed (5% aqueous NaOH , water, brine), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed at aspirator pressure. Crystallization of the residue (dichloromethane-hexane) yielded $3.092 \mathrm{~g}(82.1 \%)$ of 7 as colorless needles: $\mathrm{mp} 70-71^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3470,2960,1680,1600,1520$, $1480,1420,1140,1060,990 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.30(\mathrm{~s}, 9$ $\mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($20 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $27.4,39.5,55.8,94.3,108.1,112.0,113.4$, $129.5,139.2,157.6,176.5 \mathrm{ppm}$; MS (70 eV),$m / z$ (relative intensity) 237 ($\mathrm{M}^{+}, 87$), 205 (11), 153 (13), 121 (18), 61 (17), 57 (97), 45 (100); UV (MeOH) $209 \mathrm{~nm}(\epsilon 30283)$, 243 ($\epsilon 11465$). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 65.82 ; \mathrm{H}, 8.02$; $\mathrm{N}, 5.91$. Found: C, 65.82; H, 8.20; N, 5.74.
2'-Carboxy- $\mathbf{3}^{\prime}$-hydroxy-2,2-dimethylpropionanilide (8). To a solution of $7(1.519 \mathrm{~g}, 6.41 \mathrm{mmol})$ in 75 mL of dry THF at 0 ${ }^{\circ} \mathrm{C}$ under nitrogen was added dropwise 5.3 mL (2.6 M in hexane, 13.8 mmol) of n-butyllithium. After the mixture was stirred for 2 h , carbon dioxide was bubbled continuously through the mixture for an additional 2 h . The resulting yellow solution was diluted with ethyl acetate and extracted with two portions of 5% aqueous NaOH . The aqueous layers were combined, acidified to pH 1 (HCl), and extracted twice with ethyl acetate. Combining the organic extracts, washing ($\mathrm{H}_{2} \mathrm{O}$ and brine), drying $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrating in vacuo gave $1.478 \mathrm{~g}(97.3 \%)$ of 8 as a synthetically pure red-brown oil which crystallized slowly upon standing. A small sample was subjected to preparative TLC on silica gel (10% methanol-ethyl acetate) to afford a clear oil ($R_{f} 0.28-0.41$). Crystallization (dichloromethane-hexane) gave colorless crystals: mp 208-209 ${ }^{\circ} \mathrm{C}$ dec; IR (Nujol) 3650-2600, 1675, 1590, 1540, 1290, $1240,1160,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 1.25(\mathrm{~s}, 9 \mathrm{H}), 6.45$ (dd, $1 \mathrm{H}, J=8.2$ and 1.2 Hz), $7.09(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}$), 8.13 (dd, $1 \mathrm{H}, J=8.2$ and 1.2 Hz), 10.03 (br s, 2 H), 12.88 ($\mathrm{s}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(20 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) 28.1,40.7,106.9,109.4,111.3,132.2,143.6$, $164.3,177.1,177.6 \mathrm{ppm} ; \mathrm{MS}(70 \mathrm{eV}), \mathrm{m} / \mathrm{z}$ (relative intensity) 193 ($\mathrm{M}^{+}-\mathrm{CO}_{2}, 21$), 109 (81), 80 (16), 57 (100), 41 (35); UV (MeOH) $222 \mathrm{~nm}(\epsilon 24179), 261(\epsilon 8831)$. Combustion analysis was performed on the dimethyl derivative, 2^{\prime}-(carboxymethyl)- 3^{\prime}-meth-oxy-2,2-dimethylpropionanilide, obtained from the acid by treatment with diazomethane: $\mathrm{mp} 72.5-74^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C}, 63.40 ; \mathrm{H}, 7.17 ; \mathrm{N}, 5.28$. Found: C, 63.47 ; $\mathrm{H}, 7.31$; N, 5.32.
6-Hydroxyanthranilic Acid (2) Hydrochloride. A. From 4. To a solution of 10 mL of ethanethiol at $0^{\circ} \mathrm{C}$ under nitrogen was added sequentially aluminum chloride ($0.654 \mathrm{~g}, 49.2 \mathrm{mmol}$) and $4(0.988 \mathrm{~g}, 3.94 \mathrm{mmol})$. An immediate precipitate developed and the mixture was diluted with an additional 15 mL of ethanethiol. The mixture was stirred at room temperature for 1.5 h , poured into 5% aqueous HCl , and stirred an additional 20 min . Extracting with three $75-\mathrm{mL}$ portions of dichloromethane, combining the organic extracts, drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrating at aspirator pressure gave a brown residue. The oil was added to a solution consisting of $6 \mathrm{~N} \mathrm{HCl}(12 \mathrm{~mL})$ and acetic acid (8 mL), heated at $45^{\circ} \mathrm{C}$ for 16 h , cooled, and filtered (suction) to yield 0.244 g (30.0%) of 2 as the hydrochloride salt.
B. From 8. To a $24-\mathrm{mL}$ solution of $6 \mathrm{~N} \mathrm{HCl}-$ acetic acid (1:1) was added $8(1.454 \mathrm{~g}, 6.14 \mathrm{mmol})$. The reaction mixture was stirred at $48^{\circ} \mathrm{C}$ for 96 h . It was then cooled to $0^{\circ} \mathrm{C}$, and the resulting crystalline precipitate was collected via vacuum filtration to afford $0.842 \mathrm{~g}(72.4 \%)$ of 2 as a colorless hydrochloride salt, $\mathrm{mp} 214-216{ }^{\circ} \mathrm{C}$ dec [lit. ${ }^{3} 216^{\circ} \mathrm{C}$ dec]; analytical TLC (25% methanol-ethyl acetate) gave one spot at $R_{f} 0.29$; IR (KBr) $3350-2200,1675,1630,1560,1440,1180,1130,1100,1080,780 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 6.73$ (dd, $1 \mathrm{H}, J=8.2$ and 1.1 Hz$), 6.87$ (dd, $1 \mathrm{H}, J=8.1$ and 1.2 Hz), $7.38\left(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}^{12}\right.$), 10.91 (br $\mathrm{s}, 5 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (20 MHz , ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$) $105.7,112.4,134.3,139.0$, $161.6,170.6,180.2 \mathrm{ppm}$; UV (MeOH) 203 nm ($\epsilon 22601$), 234 (ϵ 13907).

Acknowledgment. This work was supported by Public Health Service Grant GM31715 from the National Insti-
tutes of General Medical Sciences. We are grateful to Mr. John Wityak for NMR spectra and to Mr. Rodger Kohnert for NMR and mass spectra.

Registry No. 1, 75533-14-1; 2•HCl, 94596-96-0; 3, 56619-93-3; 4, 94596-97-1; 5, 591-27-5; 6, 75151-82-5; 7, 94596-98-2; 8, 94596-99-3.

Synthesis of Acyclic, Cis Olefinic Pheromones by Way of Nickel-Catalyzed Grignard Reactions

Ernest Wenkert,* Vitor F. Ferreira, ${ }^{1}$ Enrique L. Michelotti, and Marco Tingoli ${ }^{2}$
Department of Chemistry (D-006), University of California-San Diego, La Jolla, California 92093

Received July 3, 1984

The recent discovery of an olefin synthesis based on the low-valent, nickel-mediated reactions of Grignard reagents with enol ethers and its application to the preparation of cis-olefins (eq 1) ${ }^{3}$ suggested the use of this new reaction

in the field of pheromone synthesis. The reaction appeared to be especially well suited for the construction of acyclic, cis alkenic pheromones, a large group of natural substances the introduction of whose double bonds had been carried out in the past mostly by Wittig reactions or partial hydrogenations of acetylenes. ${ }^{4}$ To illustrate its potential, the olefin synthesis scheme was focused on the use of dihydropyran (1), an inexpensive, readily available enol ether, as general starting material ${ }^{5}$ and the interaction of the latter with an array of Grignard reagents (eq 2). Several of the resultant olefinic alcohols 2 then were to be converted into pheromones of several structure types.

In an earlier report ${ }^{3}$ the reaction of dihydropyran (1) with methylmagnesium bromide in the presence of [1,3bis(diphenylphosphino) propane]nickel dichloride ((dppp) NiCl_{2}) has been shown to yield (Z)-4-hexen-1-ol (2a) and a similar reaction with ethylmagnesium bromide had led to a ca. 5:1 mixture of (Z)-4-hepten-1-ol (2b) and 4-penten-1-ol (3). This alkylation-reduction ratio now dropped to ca. 1:1 on exposure of dihydropyran (1) to the

[^0]Table I. Carbon Shifts of Alcohols 2 and 3

	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	C(8)	$\mathrm{C}(9)$	C(10)	C(11)	C(12)	C(13)
3	61.2	31.3	29.6	137.8	114.2								
2a	61.6	32.0	22.8	129.5	123.8	12.2							
2b	61.4	32.2	23.1	127.9	131.6	20.0	13.8						
2c	61.7	32.3	23.3	128.8	129.9	28.9	22.5	13.4					
2d	61.7	32.2	23.2	128.5	130.1	26.6	31.6	21.9	13.6				
2e	61.9	32.3	23.3	128.6	130.3	26.9	29.1	31.7	22.3	13.8			
$2 f$	61.8	32.3	23.3	128.6	130.2	26.9	$29.4{ }^{\text {a }}$	$28.7{ }^{\text {a }}$	31.5	22.4	13.8		
2g	61.8	32.4	23.3	128.6	130.2	27.0	$29.5{ }^{\text {b }}$	$29.5{ }^{\text {b }}$	$29.1{ }^{\text {b }}$	$29.1{ }^{\text {b }}$	31.7	22.4	13.8

${ }^{a, b}$ Signals in any horizontal row may be interchanged.

Grignard reagents, derived from n-propyl, n-butyl, n pentyl, n-hexyl and n-octyl bromides, under similar conditions. The alkylation products, (Z)-4-octen-1-ol (2c), ${ }^{6}$ (Z)-4-nonen-1-ol (2d), ${ }^{6}(Z)$-4-decen-1-ol (2e), ${ }^{6}(Z)$-4-unde-cen-1-ol ($\mathbf{2 f}$), and (Z)-4-tridecen-1-ol (2 g) ${ }^{7}$ respectively, were obtained in up to 36% yield and could be separated easily by distillation from the common reduction product 4 -penten-1-ol (3) (isolated in up to 39% yield). It is noteworthy that the 13 -carbon alcohol $\mathbf{2 g}$ has been found recently to be a product of secretion of the preorbital gland of the small neotragine antelope Raphicerus melanotis (commonly known as grysbok). ${ }^{7}$
Treatment of alcohol 2 g with methyllithium and the resultant lithium alkoxide with methanesulfonyl chloride yielded a mesylate (4a). ${ }^{8}$ Exposure of the latter or the

equivalent bromide (4b), prepared from the sulfonate 4 a by interaction with lithium bromide, ${ }^{8}$ to n-decylmagnesium bromide in the presence of cuprous cyanide/lithium chloride complex gave (Z)-9-tricosene ("Muscalure") (5), ${ }^{9}$ a sex attractant of the mature female house fly, Musca domestica, in 80% overall yield.
Conversion of alcohol 2 d into its bromide (4d) by the above two-step procedure and subsequent metal-halogen exchange with tert-butylithium produced an organolithium reagent, whose exposure to gaseous formaldehyde afforded the homologous alcohol $\mathbf{6 a},{ }^{,}$the product of hy-

drolysis of one ($6, R=R^{\prime}=H ; R^{\prime \prime}=A c$) of the sex attractants of the male redbacked cutworm Euxoa ochro-

[^1]gaster (Guenée). ${ }^{10}$ Acylation of the latter with isovaleryl chloride led to (Z)-5-decen-1-yl isovalerate (6 b), the sex pheromone of the female pine emperor moth Nudaurelia cytherea cytherea Fabr., ${ }^{11}$ in 79% overall yield.

Transformation of alcohol 2 e into an organolithium reagent by the above three-step scheme and interaction of the latter with undecanal yielded alcohol $6 \mathbf{6},{ }^{4 a, 12,13}$ whose oxidation with pyridinium dichromate (PDC) gave (Z)-6-heneicosen-11-one (7), ${ }^{4,12,13}$ the sex attractant of the female Douglas fir tussock moth Orgyia pseudotsugata, in quantitative overall yield.

PDC oxidation of alcohol 2 f produced aldehyde 8 a , a volatile constituent of the anal gland of the male wild rabbit Oryctolagus cuniculus, ${ }^{14}$ whose reaction with n octylmagnesium bromide afforded alcohol 9. ${ }^{15}$ PDC ox-

idation of the latter led to (Z)-7-nonadecen-11-one ($\mathbf{8 b}$), ${ }^{15-17}$ a sex pheromone of the female peach fruit moth Carposina niponensis, in 74% overall yield. ${ }^{18}$

Experimental Section

Infrared spectra on liquid films were measured on a PerkinElmer Model 1330 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra of CDCl_{3} solutions with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard were recorded on a Varian EM- 390 spectrometer and a $360-\mathrm{MHz}$ instrument with a highly modified Varian HR-220 console, an Oxford magnet, and a Nicolet $1180-\mathrm{E}$ computer system. ${ }^{13} \mathrm{C}$ NMR spectra of CDCl_{3} solutions were taken on a Nicolet NT-200 (wide-bore, broad-band, with Oxford magnet) spectrometer, operating at 50.31 MHz in the Fourier transform mode. The carbon shifts are in parts per million downfield from $\mathrm{Me}_{4} \mathrm{Si} ; \delta\left(\mathrm{Me}_{4} \mathrm{Si}\right)=\delta\left(\mathrm{CDCl}_{3}\right)+76.9 \mathrm{ppm}$.

General Procedure for the Reactions of Grignard Reagents with Dihydropyran. A 2.90 M ethereal solution of methylmagnesium bromide, $2.40 \mathrm{~mL}(6.00 \mathrm{mmol})$, was added dropwise to a stirring suspension of $1.63 \mathrm{~g}(3.00 \mathrm{mmol})$ of

[^2](dppp) NiCl_{2} in 80 mL of dry benzene under argon, and the mixture was refluxed for 15 min . After this catalyst reduction, 60.0 mmol of the required Grignard reagent was added and most of the ether removed by distillation. Upon solvent replacement by dry benzene up to a volume of 125 mL and addition of 100 mmol of dihydropyran (1), the mixture was heated at $70^{\circ} \mathrm{C}$ for 20 h . It then was cooled, poured into 150 mL of saturated ammonium chloride solution, and extracted with ether. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Distillation of the residue under vacuum separated the liquid products. The yield of alkylation (2) and reduction (3) products combined was ca. 75%.
Spectra of all alcohols 2: IR OH 3340 (br, m), $\mathrm{C}=\mathrm{C} 1650(\mathrm{w})$, $730(\mathrm{~m}), 695(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.87(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{Me}), 1.1-2.2$ (m , methylenes), $3.62\left(\mathrm{t}, 2, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $5.3-5.5$ ($\mathrm{m}, 2$, olefinic Hs); ${ }^{13} \mathrm{C}$ NMR δ in Table I.
(Z)-4-Undecen-1-ol (2f), liquid. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}$, 77.57; H, 13.03. Found: C, 77.50; H, 13.10.

General Procedure for the Preparation of Methanesulfonates and Bromides 4. A 1.30 M ethereal solution of methyllithium, $3.46 \mathrm{~mL}(4.50 \mathrm{mmol})$, was added dropwise to a stirring solution of 4.20 mmol of any of the alcohols $2 \mathrm{~d}, \mathrm{e}$, or g in 10 mL of dry ether under nitrogen at $0^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature for 30 min . Mesyl chloride, 4.30 mmol, was added slowly at $0^{\circ} \mathrm{C}$, and the resultant suspension was then filtered. The filtrate was washed with 4% sodium hydroxide and saturated brine solutions, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under vacuum, leading to a quantitative yield of one of the liquid mesylates $4 \mathbf{a}, \mathrm{c}$, and e .

Spectra of all the mesylates: $\mathrm{IR} \mathrm{C}=\mathrm{C} 1650$ (w), $\mathrm{C}-\mathrm{OSO}_{2} 1355$ (m), 1175 (m), $\mathrm{CH}=\mathrm{CH} 735$ (w), 720 (w), 698 (w) $\mathrm{cm}^{-1} \mathrm{j}^{1} \mathrm{H}$ NMR $\delta 0.86$ (t, 3, $J=6 \mathrm{~Hz}, \mathrm{Me}$), 1.1-2.3 (m, methylenes), 2.98 ($\mathrm{s}, 3$, MeSO_{2}), 4.18 ($\mathrm{t}, 2, J=6 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $5.1-5.5$ ($\mathrm{m}, 2$, olefinic Hs); ${ }^{13} \mathrm{C}$ NMR (4c) $\delta 13.6$ (C-9), 22.0 (C-8), 22.6 (C-3), 26.5 (C-6), 28.7 (C-2), 31.4 (C-7), 36.8 (MeSO_{2}), 69.2 (C-1), 126.9 (C-4), 130.3 (C-5).

A mixture of 1.80 mmol of any one of the mesylates and 1.10 g (12.6 mmol) of lithium bromide in 20 mL of dry tetrahydrofuran was stirred at room temperature under nitrogen for 48 h and then poured into 100 mL of ether. The suspension was washed twice with 20 mL of water, 25 mL of 4% sodium hydroxide, and 20 mL of saturated brine solutions, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated under vacuum, leading to a quantitative yield of one of the liquid bromides $\mathbf{4 b},{ }^{19} \mathbf{d},{ }^{6}$ and $f .{ }^{13}$

Spectra of all the bromides: IR C=C $1650(w), 732(w), 718$ (w), $695 \mathrm{w}^{(1)} \mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 0.87(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{Me}), 1.1-2.2$ (m, methylenes), 3.38 ($\mathrm{t}, 2, J=6 \mathrm{~Hz}, \mathrm{BrCH}_{2}$), 5.1-5.5 (m , 2, olefinic Hs).
(Z)-9-Tricosene (5). Cuprous cyanide, 224 mg , and 106 mg of lithium chloride were dried under vacuum at $100^{\circ} \mathrm{C}$ for 12 h . The salts were dissolved in 50 mL of dry tetrahydrofuran and 1 mL of the resultant 50.0 mM solution ${ }^{20}$ was added to a stirring mixture of $0.180 \mathrm{~mL}(0.38 \mathrm{mmol})$ of a 2.10 M ethereal solution of n-decylmagnesium bromide under argon at $-10^{\circ} \mathrm{C}$. A solution of $75 \mathrm{mg}(0.27 \mathrm{mmol})$ of sulfonate 4 a in 3 mL of tetrahydrofuran was added and the mixture stirred at $-10^{\circ} \mathrm{C}$ for 1 h , at $0^{\circ} \mathrm{C}$ for 2 h , and at room temperature for 1 h . It then was poured into 35 mL of a saturated ammonium chloride solution and extracted with ether. The extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Chromatography of the residue on silica gel and elution with hexane gave $70 \mathrm{mg}(80 \%)$ of liquid olefin $5:{ }^{9}$ IR $C=C 1650(\mathrm{w})$, 712 (w) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 0.82$ ($\mathrm{t}, 6, J=6 \mathrm{~Hz}$, methyls), $1.1-2.2$ (m, 38, methylenes), $5.2-5.4(\mathrm{~m}, 2$, olefinic Hs$) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.0$ ($\mathrm{C}-1, \mathrm{C}-23$), 22.6 (C-2, C-22), 31.8 ($\mathrm{C}-3, \mathrm{C}-21$), 27.1 ($\mathrm{C}-8, \mathrm{C}-11$), 29.3-29.6 (C-4 to C-6, C-12 to C-20), 129.8 (C-9, C-10). The latter was obtained in 65% yield, when the coupling process was carried out on bromide 4 b.
(Z)-5-Decen-1-yl Isovalerate (6b). A 1.80 M hexane solution of tert-butyllithium, 1.45 mL , was added dropwise to a stirring solution of $267 \mathrm{mg}(1.30 \mathrm{mmol})$ of bromide 4 d in 5 mL of dry ether under nitrogen at $0^{\circ} \mathrm{C}$, and the stirring was continued for 2 h . Excess gaseous formaldehyde was bubbled into the stirring mixture and the stirring was continued at $0^{\circ} \mathrm{C}$ for 0.5 h and at room temperature for 0.5 h . The mixture was poured into 60 mL
of ether, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, giving $162 \mathrm{mg}(80 \%)$ of liquid (Z)-5-decen-1-ol ($6 \mathbf{a}$): ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 0.85(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{Me}), 1.0-2.2(\mathrm{~m}, 12$, methylenes), $3.65(\mathrm{t}$, $2, J=6 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $5.2-5.4(\mathrm{~m}, 2$, olefinic Hs).

A solution of 172 mg (1.10 mmol) of alcohol 6a, $151 \mu \mathrm{~L}(150$ $\mathrm{mg}, 1.25 \mathrm{mmol}$) of isovaleryl chloride, and 1.2 mL of pyridine in 10 mL of methylene chloride was stirred at room temperature for 18 h . It then was washed with 2 N hydrochloric acid, 4% sodium hydroxide, and saturated brine solutions, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, yielding 260 mg (98%) of liquid ester $6 \mathbf{b b}^{11}$ IR $\mathrm{C}=\mathrm{O} 1765$ (s), C=C 1650 (w), 730 (w), 700 (w) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{~d}, 6, J=6 \mathrm{~Hz}, i-\mathrm{Pr} \mathrm{Me})$), $0.93(\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{Me}), 1.1-2.4$ ($\mathrm{m}, 15, \mathrm{CH}$, methylenes), $3.98\left(\mathrm{t}, 2, J=6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right.$), $5.2-5.4$ (m, 2, olefinic Hs).
(Z)-6-Heneicosen-11-ol (6c). An organolithium reagent was prepared from 285 mg (1.30 mmol) of bromide $4 f$ (under the conditions used for the above formation of an organometallic intermediate en route to alcohol 6a), to whose solution there was added dropwise $267 \mu \mathrm{~L}(221 \mathrm{mg}, 1.30 \mathrm{mmol})$ of undecanal at 0 ${ }^{\circ} \mathrm{C}$. Stirring at $0^{\circ} \mathrm{C}$ and subsequently at room temperature and workup as above gave 403 mg (100%) of liquid alcohol $6 \mathbf{c} .^{13}$ IR OH 3360 (br, m), C=C 1650 (w), 740 (w), 728 (w), 702 (w) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 0.85$ ($\mathrm{t}, 6, J=6 \mathrm{~Hz}, \mathrm{Me}_{2}$), $1.1-2.2$ ($\mathrm{m}, 32$, methylenes), 3.4-3.7 ($\mathrm{m}, 1, \mathrm{OCH}$), $5.2-5.4$ ($\mathrm{m}, 2$, olefinic Hs).
(Z)-6-Heneicosen-11-one (7). A mixture of 620 mg (2.00 mmol) of alcohol 6 c and $752 \mathrm{mg}(2.00 \mathrm{mmol})$ of PDC in 10 mL of methylene dichloride was stirred under nitrogen at room temperature for 41 h . It then was filtered through a short Florisil column and the latter washed with 200 mL of methylene chloride. The combined organic solutions were washed with 1 N hydrochloric acid and saturated sodium bicarbonate solutions, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, yielding $616 \mathrm{mg}(100 \%)$ of liquid ketone 7: ${ }^{12,13}$ IR C=0 1712 (s), C $=\mathrm{C} 1640(\mathrm{w}), 732$ (w), 718 (w), 697 (w) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\delta 0.85\left(\mathrm{t}, 6, J=6 \mathrm{~Hz}, \mathrm{Me}_{2}\right), 1.1-2.2(\mathrm{~m}, 28$, methylenes), 2.2-2.5 (m, 4, α-acylmethylenes), $5.2-5.4$ ($\mathrm{m}, 2$, olefinic Hs).
(Z) -4-Undecenal (8a). Oxidation of $340 \mathrm{mg}(2.00 \mathrm{mmol})$ of alcohol $2 f$ and workup by the above procedure for the preparation of ketone 7 yielded $286 \mathrm{mg}(85 \%)$ of liquid aldehyde $8 \mathrm{a}:{ }^{14}$ IR CHO 2720 (w), $\mathrm{C}=01726$ (s), $\mathrm{C}=\mathrm{C} 1652$ (w), 720 (w), $700(\mathrm{w}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ ($\mathrm{t}, 3, J=6 \mathrm{~Hz}, \mathrm{Me}$), 1.1-2.2 (m, 10, methylenes), $2.3-2.4\left(\mathrm{~m}, 2,2 \mathrm{H}-3\right.$), $2.52\left(\mathrm{t}, 2, J=6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}\right.$), $5.2-5.5$ (m , 2, olefinic Hs), 9.78 ($\mathrm{t}, 1, J=1 \mathrm{~Hz}, \mathrm{CHO}$); ${ }^{13} \mathrm{C}$ NMR $\delta 13.8$ (C-11), 19.8 (C-3), 22.3 (C-10), 26.9 (C-6), 28.7 (C-8 or C-7), 29.3 (C-7 or C-8), 31.5 (C-9), 43.5 (C-2), 126.8 (C-4), 131.3 (C-5), 201.7 (C-1).
(Z)-12-Nonadecen-9-ol (9). A 1.56 M ethereal solution of n-octylmagnesium bromide, 1.40 mL , was added dropwise to a stirring solution of $272 \mathrm{mg}(1.62 \mathrm{mmol})$ of aldehyde $8 \mathbf{a}$ in 10 mL of dry ether under nitrogen at $0^{\circ} \mathrm{C}$ and the mixture then stirred for 15 min and thereafter poured into a saturated ammonium chloride solution. The water phase was extracted with ether and the combined organic solutions were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated, producing 423 mg (93%) of liquid alcohol 9 : ${ }^{16}$ IR OH 3355 (m), C $=\mathrm{C} 1650(\mathrm{w}), 722(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.85(\mathrm{t}, 6, J=6 \mathrm{~Hz}$, Me_{2}), 1.1-2.2 ($\mathrm{m}, 28$, methylenes), 3.4-3.7 (m, 1, OCH), 5.2-5.4 ($\mathrm{m}, 2$, olefinic Hs).
(Z) -12-Nonadecen-9-one (8b). Oxidation of $564 \mathrm{mg}(2.00$ mmol) of alcohol 9 and workup by the above procedure for the preparation of ketone 7 yielded 521 mg (93%) of liquid ketone 8b: ${ }^{16,17}$ IR C=0 1711 (s), $\mathrm{C}=\mathrm{C} 1650(\mathrm{w}), 718(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88\left(\mathrm{t}, 6, J=6 \mathrm{~Hz}, \mathrm{Me}_{2}\right), 1.2-1.4(\mathrm{~m}, 20$, methylenes), $2.0-2.1$ ($\mathrm{m}, 2,2 \mathrm{H}-14$), 2.2-2.5 (m, $6,2 \mathrm{H}-8,2 \mathrm{H}-10,2 \mathrm{H}-11$), $5.2-5.5$ (m, 2, olefinic Hs). ${ }^{21}$
Registry No. 1, 110-87-2; 2a, 928-91-6; 2b, 6191-71-5; 2c, 54393-36-1; 2d, 59499-28-4; 2e, 57074-37-0; 2f, 21676-07-3; 2g, 75568-01-3; 3, 821-09-0; 4a, 94519-25-2; 4b, 74088-20-3; 4c, 94519-26-3; 4d, 59499-29-5; 4e, 86301-89-5; 4f, 77899-13-9; 5, 27519-02-4; 6a, 51652-47-2; 6b, 37616-04-9; 6c, 54844-71-2; 7, 54844-65-4; 8a, 68820-32-6; 8b, 63408-45-7; 9, 72855-91-5; EtBr, $74-96-4 ; n-\mathrm{PrBr}, 106-94-5 ; n-\mathrm{BuBr}, 109-65-9 ; n$-PentBr, 110-53-2; $n-\mathrm{HexBr}, 111-25-1 ; n-\mathrm{OctBr}, 629-04-9 ; \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{Br}, 112-29-8$; $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{CHO}, 112-44-7$.
(21) The physical constant of all products of known constitution were identical with those cited in the literature.

[^0]: (1) Conselho Nacional de Pesquisas (Brazil) fellowship holder, 1980-1984.
 (2) Postdoctoral fellow, 1983, supported by NATO (Grant RG 094.81) and the Consiglio Nazionale delle Ricerche (Italy).
 (3) (a) Wenkert, E.; Michelotti, E. L.; Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246. (b) Wenkert, E.; Michelotti, E. L.; Swindell, C. S.; Tingoli, M. J. Org. Chem. 1984, 49, 4894.
 (4) (a) Henrick, C. A. Tetrahedron 1977, 33, 1845. (b) Rossi, R. Synthesis 1977, 817; (c) 1978, 413.
 (5) For the use of 2,3 -dihydrofuran in the same type of reaction leading to two pheromones, see ref 3 b .

[^1]: (6) Bestmann, H. J.; Koschatzky, K. H.; Schătzke, W.; Süsz, J.; Vostrowsky, O. Liebigs Ann. Chem. 1981, 1705.
 (7) Burger, B. V.; le Roux, M.; Spies, H. S. C.; Truter, V.; Bigalke, R. C.; Novellie, P. A. Z̈. Naturforsch. C.: Biosci. 1981, 36, 344 .
 (8) Huang, W.; Pulaski, S. P.; Meinwald, J. J. Org. Chem. 1983, 48, 2270.
 (9) Previous syntheses: (a) citation in ref 4a. (b) Pop, L. M.; Ghizdavu, I.; Hodosan, F. P. Rom. Pat. RO 70999 [Chem. Abstr. 1982, 96, 103958]. (c) Odinokov, V. N.; Tolstikov, G. A.; Galeyeva, R. I.; Kargapol'tseva, T. A. Tetrahedron Lett. 1982, 23, 1371. (d) Pop, L.; Hodosan, F. Rev. Roum. Chim. 1982, 27, 545 [Chem. Abstr. 1982, 97, 127307]. (e) Brown, H. E.; Basavaiah, D. J. Org. Chem. 1982, 47, 3806.

[^2]: (10) Struble, D. L. J. Chem. Ecol. 1981, 7, 615.
 (11) Henderson, H. E.; Warren, F. L.; Augustyn, O. P. H.; Burger, B. V.; Schneider, D. F.; Boschoff, P. R.; Spies, H. S. C.; Geertsema, H. J. Chem. Soc., Chem. Commun. 1972, 686.
 (12) Smith, R. G.; Daves, G. D., Jr.; Daterman, G. E. J. Org. Chem. 1975, 40, 1593.
 (13) Vig, O. P.; Sharma, M. L.; Verma, N. K.; Malik, N. Indian J. Chem., Sect. B 1980, 19B, 950.
 (14) Goodrich, B. S.; Hesterman, E. R.; Murray, K. E.; Mykytowycz, R.; Stanley, G.; Sugowdz, G. J. Chem. Ecol. 1978, 4, 581.
 (15) Kamikado, T.; Aoki, I. Jpn. Kokai Tokkyo Koho 7981208 [Chem. Abstr. 1980, 92, 93899].
 (16) Yoshida, T.; Saito, S. Bull. Chem. Soc. Jpn. 1982, 55, 3047.
 (17) Yadagiri, P.; Yadav, J. S. Synth. Commun. 1983, 13, 1067.
 (18) Pheromone syntheses based on palladium-or nickel-catalyzed reactions of Grignard reagents with (a) vinyl chlorides or (b) vinyl sulfides [(a) Ratovelomanana, V.; Linstrumelle, G. Synth. Commun. 1984, 14, 179; (b) Naso, F., private communication] and on reactions of (c) alkenylcopper reagents [(c) Alexakis, A.; Cahiez, G.; Normant, J. F. Tetrahedron Lett. 1978, 2027. Cahiez, G.; Alexakis, A.; Normant, J. F. Ibid. 1980, 21, 1433. Gardette, M.; Alexakis, A.; Normant, J. F. J. Chem. Ecol. 1983, 9, 219, 225. Alexakis, A.; Commercon A.; Coulentianos, C.; Normant, J. F. Tetrahedron 1984, 40, 715].

